DAIKIN AMERICA, INC.

Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

Alec Falzone, Joe Sunstrom, Chad Meserole, Ron Hendershot, Emily Grumbles, Ferdousi Khan, Megan Flannigan

Daikin Technical Center, Decatur, Alabama DOE Annual Merit Review June 13, 2019

Project ID: ES312

This presentation does not include proprietary, confidential or otherwise restricted information

Timeline

- Start Date: 10/1/16
- End Date: 3/31/20
- 66% Complete

Budget

- Total \$1,826,895
 - DOE \$1,250,000
 - Daikin America \$576,895
- Expenditure of Gov't Funding
 - FY2017 524 K
 - FY2018 ~ 583 K (estimate)
 - FY2019 ~ 574 K (estimate)

Target and Barriers

- Performance 300-1000 cycles at 4.6 V
- Failure mechanisms at high voltage

Partners

- Interactions/Collaborations
 - PHI Minneapolis
 - University of Texas, Dallas
 - Evans Analytical Group

Project Objective: to develop a stable (300 – 1000 cycles), high-voltage (up to 4.6 V), and safe (self-extinguishing) formulated electrolyte.

Performance Objective

- Understand mechanisms for cell failure via electrolyte
- Propose electrolyte solvent systems through DOE methods for high voltage battery systems. This includes optimization of additives
- Optimize additive packages for increased cycle life

Impact to DOE VT mission

- Electrolytes which facilitate stable high voltage cycling of lithium ion batteries present a pathway to higher energy batteries.
- Higher energy batteries enabled by simple material substitution not only positively impact gravimetric and volumetric energy density targets but also are beneficial towards DOE cost targets (wH/\$)

Project Overview - Approach

Composition baselines

1.2M LiPF₆ EC/EMC (2/8) + 1% PS 1.2M LiPF₆ EC/EMC/FE (2/6/2) + 1% PS 1.2M LiPF₆ FEC/EMC/FE (2/6/2) + 1% PS

200 mA-hr pouch cell

 $\begin{array}{l} LiCoO_{2} \ (LCO) \ cathode \\ LiNi_{0.33}Mn_{0.33}Co_{0.33}O_{2} \ \ (NMC111) \ cathode \\ LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2} \ (NMC532) \ cathode \\ LiNi_{0.6}Mn_{0.2}Co_{0.2}O_{2} \ (NMC622) \ cathode \\ LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2} \ (NCA) \ cathode \\ \end{array}$

Graphite anode

Cells are anode limited and balanced for 4.4 V

Upper Voltages 4.2, 4.5, 4.6 V

Cycle Performance to 4.6 V as a Function of [FEC] and Nickel Content

- Cycling experiments performed at r.t. at 0.7C with CC charge/CC discharge
- FEC is necessary at 4.6V, 15% (v/v) minimum

- Our approach to determine film thickness and elemental composition utilizes Auger Electron Spectroscopy (AES) and an Argon ion-gun sputter method
- However, a better sputter rate calibrant than SiO₂ is needed

500 Å Film

1000 Å Film

	Carbon (Å)	Aluminum (Å)
500 Å	542	881
1000 Å	1080	851

- Sputtered amorphous carbon films serve as the AES calibrant ($\approx 1 \text{ nm/cycle}$)
- FIB-SEM Performed at Evans Analytical Group (Raleigh, NC)

- On average, the cycled cathode requires 24-29 additional sputter cycles to diminish the carbon signal
- Film on NMC622 cathode (4.6V, 20% FEC, 20% HFE) \approx 24-29 nm

- Strong metal oxide signal post-depth profile
- Remnant carbon signal is from below surface particle depth
- Elemental information is inconclusive, chemical analysis is critical (TOF-SIMS)

NMC622 Cathode: 4.6V, Hydrocarbon vs. Fluorinated Electrolyte

TOF-SIMS data was obtained in collaboration with Physical Electronics, USA (PHI)

NMC622 Cathode: 4.6V, Hydrocarbon vs. Fluorinated Electrolyte

TOF-SIMS data was obtained in collaboration with Physical Electronics, USA (PHI)

Hydrocarbon Electrolyte

Fluorinated Electrolyte

- In summary: Fluorinated components of the electrolyte correlate to fluorinated organic fragments on the cathode
- Elementally, the SEI layer is identical regardless of electrolyte
- However, there is a significant chemical difference in the composition that is electrolytedependent

Battery Thickness vs. Time/Voltage

- Battery (non-gas) thickness measurements were obtainined using Keyence contact sensors
- Changes in the analog output signal are proportional to thickness changes (non-gas)
- Calibration curves of AV vs. thickness standards were generated
- Sensors have 1 mm accuracy and 0.1 µm resolution

Summary & Acknowledgements

- Milestones in Year 2 are primarily centered around physical analysis of the films formed on the electrodes by introduction of fluorinated additives in the electrolyte
- Using the carbon films to determine thickness as a function of sputtering time, a film thickness of 24-29 nm was observed for electrodes exposed to fluorinated electrolyte.
- TOF-SIMS analysis of the cycled cathodes suggests the presence of hydrocarbonfluorocarbon film on the electrodes when a fluorinated electrolyte is used
- Electrochemical performance has been completed for all chemistries which were proposed. NCA cathodes also show stable cycle life at 4.6 V
- A plan to submit interim cells has been established. It includes 30 NMC532/Graphite cells with to-date best practice fluorinated electrolyte.

Daikin gratefully acknowledges funding from DOE Vehicle Technologies Office (Tien Duong) and TARDEC (Yi Ding)

Technical Back Up Slides

Surface Techniques for Bulk Analysis

Alternating sequence of Argon sputtering and AES

Thickness Standard Expts

AES beam:

3kV

~200nA

AES Multiplex:

Monitor C, Al, Si, and O intensity Focus on C, Al, and Si

Ar+ ion beam:

3keV

~180nA

1mm x 1mm raster

Ion beam dwell (time per sputter cycle):

45 sec (all other spots on both samples)

60 sec (Spot 1, 500Å C)

Samples:

500Å C / 1000Å AI / Si wafer

1000Å C / 1000Å AI / Si wafer

3 spots per sample are measured

Aluminum

Silicon

Methodology to Determine Film Thickness

Aluminum completely removed

Carbon completely removed

Red crosshair indicates the electron beam impact position where the AES measurements were made.

- XPS spectra of tested NMC622 cathode (4.6V, fluorinated electrolyte, 200 cycles). Survey before and after a short sputter cycle (left), Carbon 1s (middle), and Fluorine 1s (right) fitted spectra are depicted¹
- Pre-sputter multiplex data is representative of surface chemical species. Investigation of changes as a function of depth is ongoing
- 1) Shulz, N. et. al, J. Electrochem. Soc., 2018, 165(5), A819-A832

